Causes of Revolt of 1857 in Points |  Ordinance Making Power of President and Governors |  Mangroves Cover in India |  Coral Reefs in India |  Seasons and Climate in India |  Constitutional and Statutory Bodies in India |  Rock Edicts of Ashoka |  Types of Motions in Parliamentary Procedure |  Types of Majorities in Parliament |  Pressure Groups in World and India |  Order of Precedence |  Types of Rocks |  Treaties in Indian History |  Types of Rocks |  Features of Indian Economy |  Geographical Indications |  Ancient History Terminology and Meanings |  Schedules of the Constitution |  Nuclear Power Plants in India List  |  Types of Clouds for SSC CGL | Nuclear Power Plants in India ListTypes of Ocean CurrentsStructure: Layers of EarthAPPSC Group 1 Answer KeySSC JE 2017 QUESTION PAPEROne Word Substitution for SSC and Bank ExamsMPSC Answer Key 2017 2017Layers of AtmosphereMPSC Answer Key 2017 2017BPSC Solved Question Paper 2017MPPSC Solved Question Paper 2017GST Bill IndiaDelhi SultanateLaw Commission of IndiaOscar Awards Winner 2017 ListDiseases in CropsCommon Drugs and UsesDifferent Types of Deserts in WorldUPSC Civil Services Exam-2016 Answer KeyUPSC CAPF Exam-2016 Answer Key | UPPSC UPPER Subordinate Exam-2016 Answer Key | Regulatory BodiesNational Parks in India | International Airports in India  | United Nation International Years National Highways | National Birds of Countries | Sessions of Congress  | Facts About Kerala

AP & GP

Arithmetic progression:
The numerical sequence, in which each next term beginning from the second is equal to the previous term, added with the constant for this sequence number  d, is called an arithmetic progression. The number d is called a common difference.
Any term of an arithmetic progression is calculated by the formula:

an =  a1 + d ( n – 1 ) , Where a1 is the first term.

A sum of  n first terms of arithmetic progression is calculated as:
                                                                                 
                                                         S_n=\frac{n}{2}( a_1 + a_n).
                                                         S_n=\frac{n}{2}[ 2a_1 + (n-1)d].

where an is the nth term and n is the no of terms in sequence.

Geometric progression:
The numerical sequence, in which each next term beginning from the second is equal to the previous term, multiplied by the constant for this sequence number r, is called a geometric progression. The number r is called a common ratio. Any term of a geometric progression is calculated by the formula:

b=  a1  r n - 1 
A sum of  n first terms of geometric progression is calculated as:

                                                         = , |r| >1
                                                     = , |r| <1

Related Posts